Summary of Course Requirements Descriptions for Core Courses (Required)			(Note: Core Courses and Electives listed are for the Engineering The Future Funding Program - Students must also satisfy their University's degree requirements regarding core courses and electives, which may differ from those listed here.) Elective Courses (must take 3)
Colorado School of Mines	ESGN 541 Microbial Process Analysis and Modeling Microorganisms facilitate the transformation of many organic and inorganic constituents. Tools for the quantitative analysis of microbial processes in natural and engineered systems are presented. Stoichiometries, energetics, mass balances and kinetic descriptions of relevant microbial processes allow the development of models for specific microbial systems. Simple analytical models and complex models that require computational solutions will be presented. Systems analyzed include suspended growth and attached growth reactors for municipal and industrial wastewater treatment as well as in situ bioremediation systems.	ESGN504 Water and Wastewater Treatment This course provides an overview of unit operations and processes used for physical, chemical, and biological treatment of water and wastewater. Coverage will include treatment objectives, process theory and introduction to practice.	ESGN 453 Wastewater Engineering ESGN 454 Water Supply Engineering ESGN 530 Environmental Eng Pilot Plant Lab ESGN 530 Environmental Eng Pilot Plant Lab ESGN 503 Adv Water Treatment Eng and Water Reuse ESGN 503 Adv Water Treatment Eng and Water Reuse ESGN 503 Environmental Law ESGN 500 Environmental Water Chemistry ESGN 501 Environmental Water Chemistry ESGN 501 Environmental Pollution: Sources, Characteristics, Trnspt and Fate ESGN 505 Experimental Design and Env Data Analysis ESGN 522 Subsurface Contaminant Transport ESGN 522 Subsurface Contaminant Transport ESGN 523 Pollution Prevention: Fundamentals and Practices ESGN 575 Hazardous Waste Site Remediation ESGN 591 Analysis of Environmental Impact